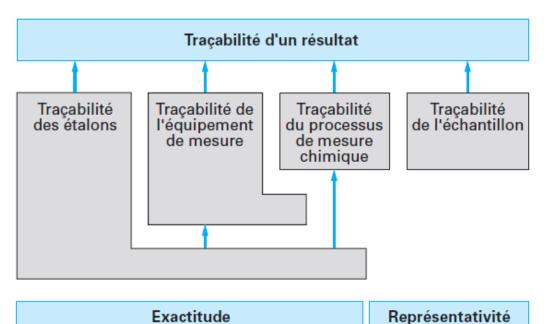
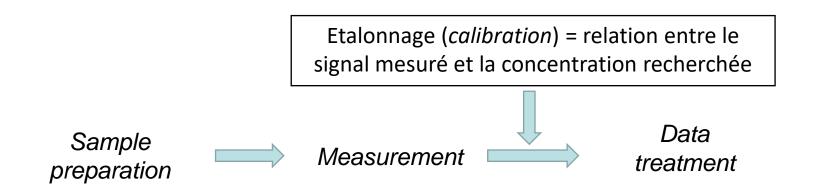
Course Outline

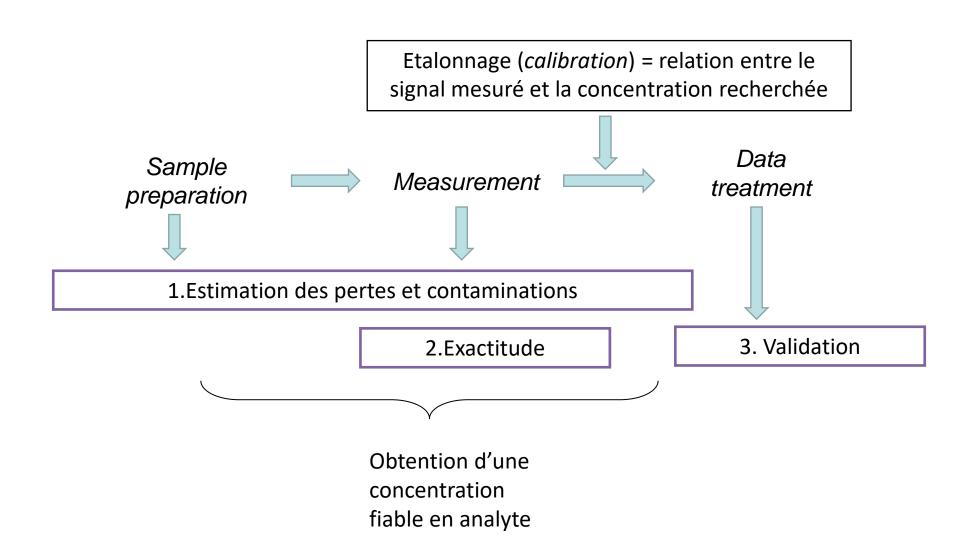

- 1. General informations on chemical analysis
- 2. Sample preparation
- 3. Metals analysis
- 4. Soluble inorganic pollutants analysis
- 5. Organic pollutants analysis
- 6. Quality assurance

6. Assurance qualité d'une analyse

- Qu'est ce que l'assurance qualité?
 - Ensemble des actions préétablies et systématiques nécessaires pour donner la confiance appropriée en ce qu'un produit ou service satisfera aux exigences données relatives à la qualité
 - Les systèmes qualité = ensemble de la structure organisationnelle, des procédures.. Pour maître en œuvre la gestion de la qualité: Plusieurs référentiels:
 - ▶ Certification → normes ISO 9001 (ISO standards)
 - ▶ Bonnes pratiques de laboratoires (BPL) (*Good Laboratory Practice*) → utilisées essentiellement pour les salles blanches
 - Norme NF EN ISO/CEI 17025 (General requirements for the competence of testing and calibration laboratories) → The most used in environmental laboratories → requirements for competence and organizations
 - → Accréditation (COFRAC)

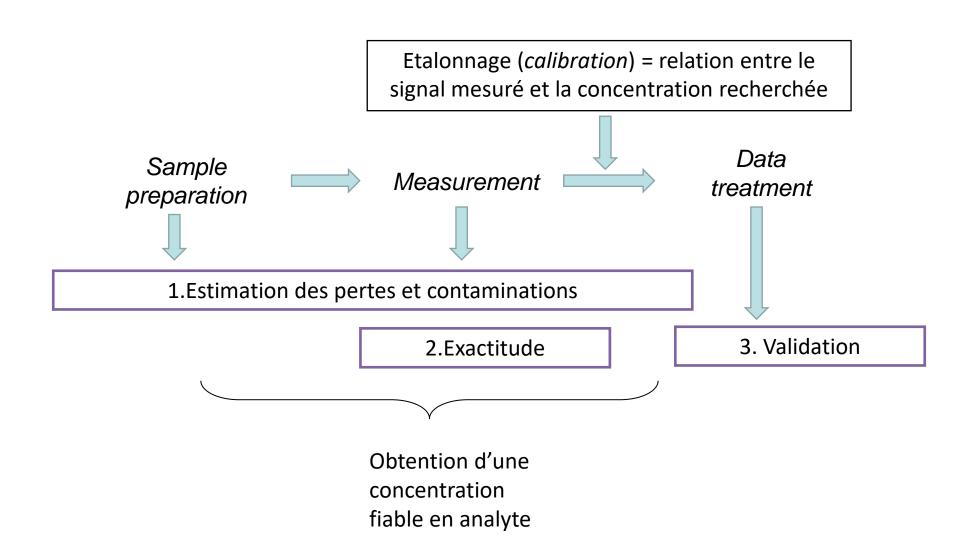
6. Assurance qualité d'une analyse

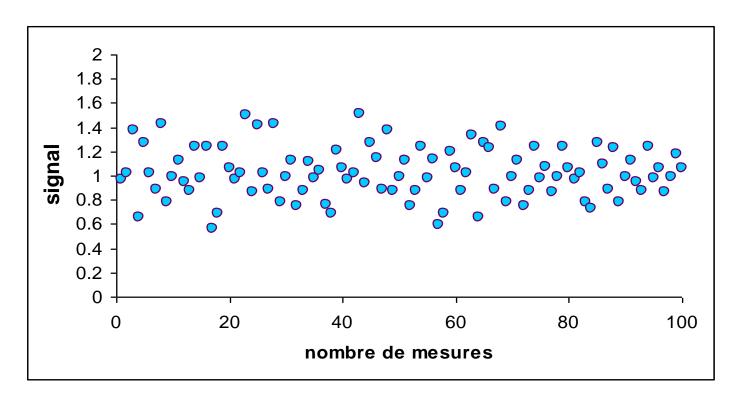

- Qu'est ce que l'assurance qualité?
 - La <u>traçabilité</u> de l'analyse (*traceability*): doit assurer le raccordement du résultat obtenu à des étalons nationaux ou internationaux par l'intermédiaire d'une chaîne ininterrompue de comparaisons ayant toutes des incertitudes déterminées


En environnement, du fait de la complexité des matrices/analyses, peu de laboratoire de référence:

- AQUAREF, laboratoire national de référence de l'eau et des milieux aquatiques
- LCSQA: Laboratoire Central de Surveillance de la Qualité de l'Air

6. Assurance qualité: Chaînes de qualité


6. Assurance qualité: Chaînes de qualité


6.1. Estimation des pertes et contaminations

- Vérification des pertes ou des contaminations au cours du pré-traitement et au cours de l'analyse:
 - Blanc d'échantillons: Il s'agit de faire subir le même protocole de traitement, qu'à un échantillon, à un blanc de même matrice d'analyse
 - Utilisation d'un échantillon de référence: il doit être de même nature que l'échantillon:
 - MRC : Matériaux de référence certifiés
 - ▶ BNM : Bureau Nationale de Métrologie
 - NIST : National Institute of Standards and Technology (USA)
 - ▶ BCR : Bureau communautaire de référence (Bruxelles)
 - AIEA : Agence Internationale pour l'Energie Atomique (Vienne)
 - MRI : Matériaux de référence internes ou MRL (de laboratoire)

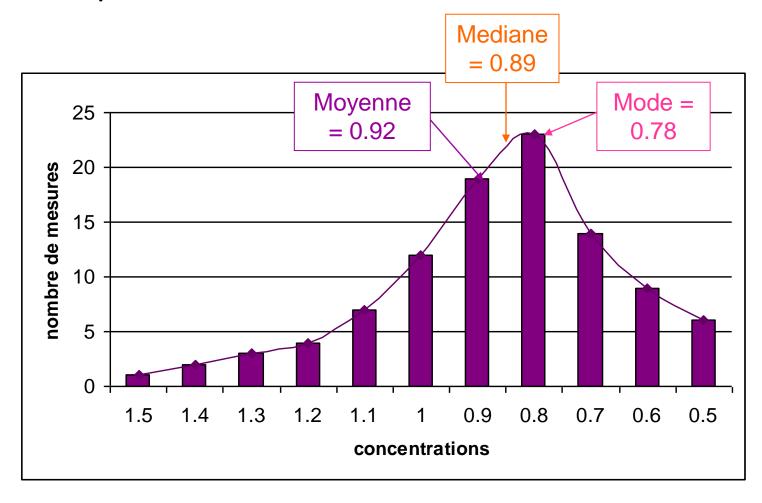
6. Assurance qualité: Chaînes de qualité

- Qu'est ce qu'une mesure?
 - En général afin d'avoir une information la plus exacte possible de la valeur vraie recherchée, plusieurs replicats (replications) sont faits.

Quel indice de tendance?

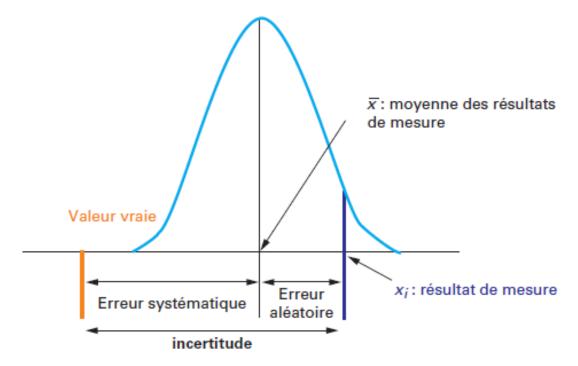

- Quoi prendre comme valeur de mesures?
 - Moyenne empirique ou arithmétique:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$


Médiane = valeur qui définie l'échantillon en 2 parties égales

Mode = valeur la plus fréquente

Quoi prendre comme valeur de mesures?

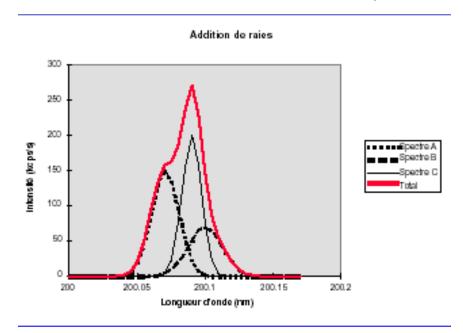


Quoi prendre comme valeur de mesures?

- Quelle valeur centrale utilisée?
 - La moyenne est en générale implanté dans les systèmes d'acquisition
 - La médiane rarement implanté, mais l'intérêt est
 - quelle ne tient pas compte des valeurs aberrantes
 - ▶ 8.5, 8.3, 8.6,8.8, 8.4 a une médiane de 8.5 et une moyenne de 8.52
 - ▶ 8.5, 8.3, 8.6,12.2, 8.4 a une médiane de 8.5 et une moyenne de 9.2
 - quelle tient compte des valeurs sous le seuil de détection
 - <1, 1.2, 1.1, <1, 1.2 a une médiane de 1.1 et une moyenne de?????</p>
 - Le mode n'a pas d'intérêt propre pour la chimie analytique

- Déterminer l'exactitude d'une mesure revient à estimer son incertitude
- Quelle est l'incertitude sur cette valeur centrale?

Incertitude: l'incertitude n'est pas une erreur

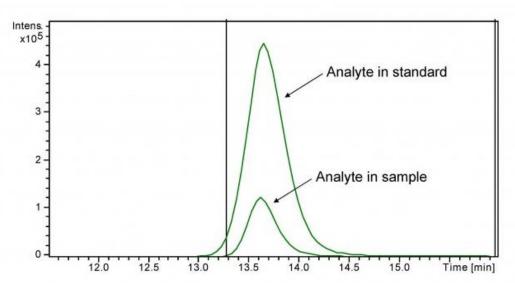

- ▶ Justesse (*Trueness*): Étroitesse de l'accord entre résultat et valeur vraie
 - Erreur systématique ou biais
- ▶ Fidélité (*Precision*): Dispersion des réplicats
 - Erreur aléatoire

<u>L'ISO 5725 (corr 1998)</u> **Exactitude** (justesse et fidélité) des résultats et méthodes de mesure

- ISO 5725-2: Méthode de base pour la détermination de la répétabilité et de la reproductibilité d'une méthode de mesure normalisée.
- ISO 5725-3:Mesures intermédiaires de la fidélité d'une méthode de mesure normalisée.
- ISO 5725-4: Méthodes de base pour la détermination de la justesse d'une méthode de mesure normalisée.

- Justesse (Trueness): Étroitesse de l'accord entre résultat et valeur vraie
 - Erreur systématique ou biais peut être dû à:
 - un rendement d'extraction/minéralisation mal estimé et/ou non corrigé ;

- Justesse (*Trueness*): Étroitesse de l'accord entre résultat et valeur vraie
 - Erreur systématique ou biais peut être dû à:
 - un rendement d'extraction/minéralisation mal estimé et/ou non corrigé ;
 - une interférence ou une mauvaise résolution,



- Justesse (*Trueness*): Étroitesse de l'accord entre résultat et valeur vraie
 - Erreur systématique ou biais peut être dû à:
 - un rendement d'extraction/minéralisation mal estimé et/ou non corrigé ;
 - une interférence ou une mauvaise résolution,

un effet de matrice non corrigé (variation de sensibilité dans la matrice de

l'échantillon);

Exemple d'effet de matrice liée à une perte d'efficacité d'atomisation ou d'ionisation en LC-MS/ICP-MS ou AES/GC-MS

- Justesse (Trueness): Étroitesse de l'accord entre résultat et valeur vraie
 - Erreur systématique ou biais peut être dû à:
 - un rendement d'extraction/minéralisation mal estimé et/ou non corrigé ;
 - une interférence ou une mauvaise résolution,
 - un effet de matrice non corrigé (variation de sensibilité dans la matrice de l'échantillon);
 - un mauvais modèle d'étalonnage ou de mauvais étalons ;
 - une perte d'analyte ;
 - une contamination ;
 - **...**

- Justesse (Trueness): Étroitesse de l'accord entre résultat et valeur vraie
 - Utilisation d'un échantillon de référence: il doit être de même nature que l'échantillon
 - Calcul du biais (erreur systématique):

$$B = \frac{\overline{x} - x_0}{x_0} 100$$
 ou $R = \frac{\overline{x}}{x_0} 100 = 100 + B$

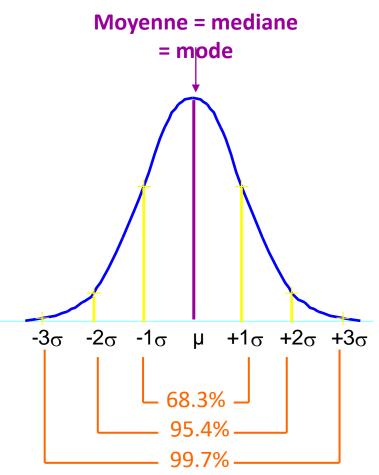
- ightharpoonup Avec \bar{x} moyenne d'un nombre n d'analyses de l'échantillon de référence
 - x₀ valeur de référence certifié ou accepté
 - R taux de recouvrement

- Justesse (Trueness): Étroitesse de l'accord entre résultat et valeur vraie
 - Erreur systématique ou biais
- ▶ Fidélité (*Precision*): Dispersion des réplicats
 - Erreur aléatoire peut être due à:
 - L'hétérogénéité de l'échantillon ;
 - Un problème de préparation/stockage (modification de l'échantillon au cours du temps);
 - Une instabilité de l'appareil;
 - Changement d'opérateur...

- ▶ Justesse (*Trueness*): Étroitesse de l'accord entre résultat et valeur vraie
 - Erreur systématique ou biais
- Fidélité (Precision)
 - Calcul de l'erreur aléatoire:

Variance
$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n - 1}$$

- Ecart-type (Standard Deviation) $\sigma = \sqrt{s^2}$
- ▶ Ecart type relatif (Relative SD) $RSD = \frac{G}{\bar{x}}$


- ▶ Justesse (*Trueness*): Étroitesse de l'accord entre résultat et valeur vraie
 - Erreur systématique ou biais
- Fidélité (Precision)
 - Calcul de l'erreur aléatoire:
 - Répétabilité (repeatability): Étroitesse de l'accord entre les résultats des mesurages successifs réalisés dans les mêmes conditions de mesure
 - Reproductibilité (reproducibility): Étroitesse de l'accord entre les résultats des mesurages successifs réalisés en faisant varier les conditions de mesure
 - ex.: principe de mesure, lieu, observateur, instrument...

▶ Justesse (*Trueness*): Étroitesse de l'accord entre résultat et valeur vraie

- Erreur systématique ou biais
- Fidélité (Precision)
 - Calcul de l'erreur aléatoire:

$$\varepsilon = 3.\sigma$$

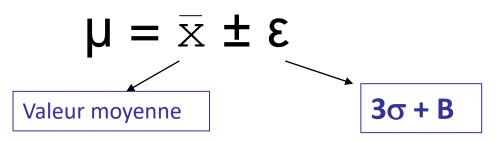
- ▶3 correspondant à la prise en compte de 99,73 % des mesures si on considère une distribution des valeurs selon une loi log normale sauf si trop peu de mesures
- Ce calcul dépend de la norme notamment

- Justesse (Trueness)
- Fidélité (Precision)

Pour être considérée exacte, la mesure doit être à la fois juste et fidèle!

Ni juste ni fidèle

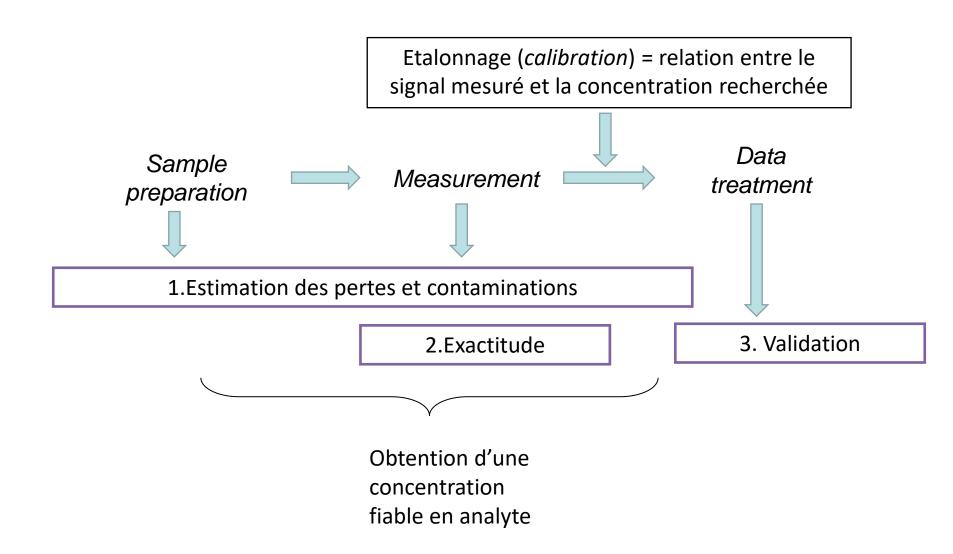
Fidèle mais pas juste



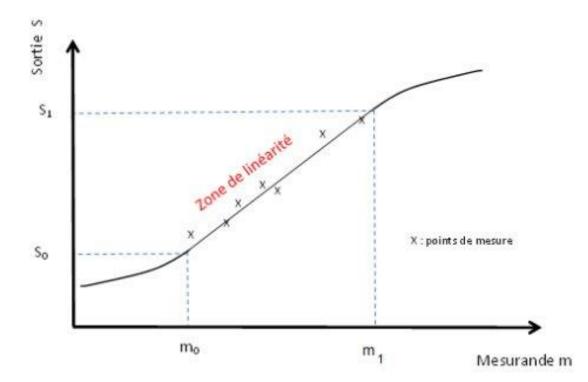
Juste mais pas fidèle

Juste et fidèle

= exacte



- Adapter le nombre de chiffre après la virgule en fonction de l'incertitude!
 - 2.36 +/- 0.03 μg/L
 - 2.4 +/- 0.3 μg/L


6. Assurance qualité: Chaînes de qualité

- Relation entre le signal mesuré et la concentration recherchée
- 3 types d'étalonnage:
 - Étalonnage externe
- Si effet de matrice, dérive de l'appareil...:
 - Étalonnage interne
 - Méthode des ajouts dosés

3 types d'étalonnage:

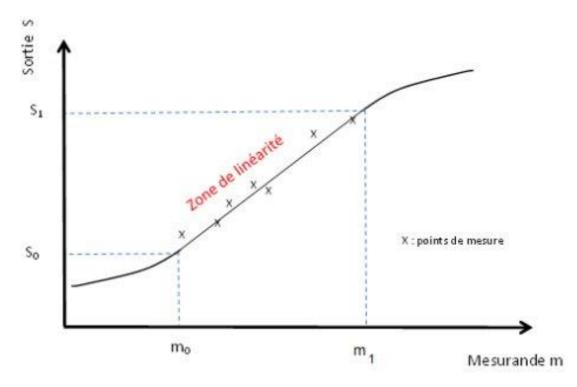
Étalonnage externe → en général linéaire, il faut définir la gamme de linéarité (linear working range).

Droite d'étalonnage:

$$y = ax + b$$

Avec a = pente de la droite définit la <u>sensibilité</u> de la méthode d'analyse

b = ordonnée à l'origine → signal du blanc


- 3 types d'étalonnage:
 - Étalonnage externe

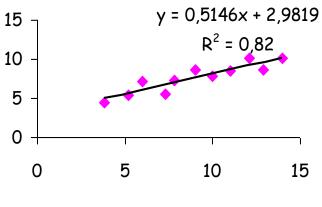
Qu'est ce que la sensibilité d'une analyse?

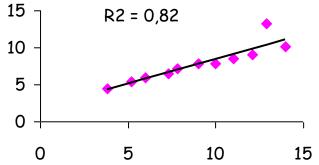
- → Capacité du système à maximiser l'intensité du signal d'émission pour une concentration donnée
- → Capacité à distinguer deux concentrations proches

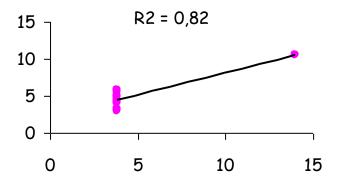
3 types d'étalonnage:

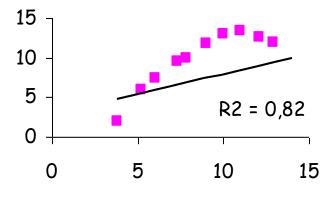
Étalonnage externe → en général linéaire, il faut définir la gamme de linéarité (linear working range).

Droite d'étalonnage:


$$y = ax + b$$


Avec a = pente de la droite définit la <u>sensibilité</u> de la méthode d'analyse


b = ordonnée à l'origine → signal du blanc

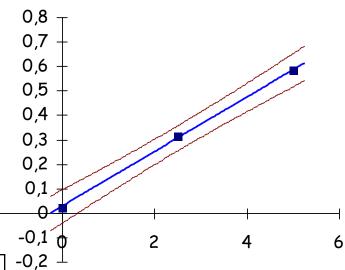

3 types d'étalonnage:

Étalonnage externe → Vérification de la linéarité: Attention au coefficient de corrélation!

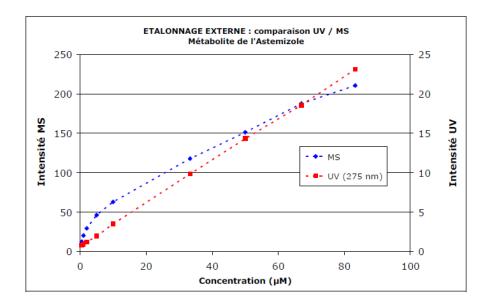
3 types d'étalonnage:

▶ Étalonnage externe → Il y a bien sûr une incertitude sur la

droite d'étalonnage:


Intervalle de confiance de la droite prédite

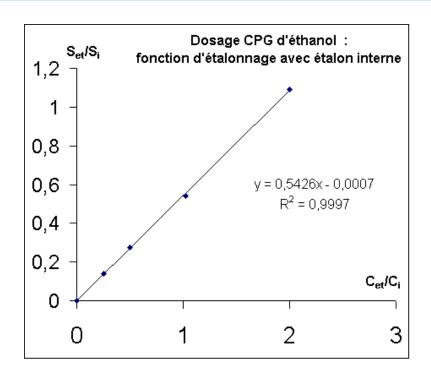
$$a - t\sigma_a \le a \le a + t\sigma_a$$


$$b - t\sigma_b \le b \le b + t\sigma_{a1}$$

L'intervalle de confiance est définie à partir de la table de Student :

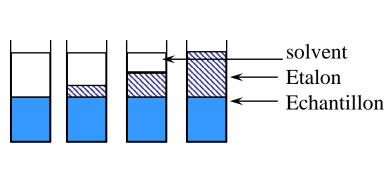
				- 6
intervalle de confiance	5 mesures	10 mesures	20 > 100 mesures mesures	
50 %	0.92	0.88	0.86	0.84
90 %	1.48	1.37	1.06	1.29
95 %	2.57	2.22	1.72	1.2
99 %	4.03	3.17	2.53	2.6

- 3 types d'étalonnage:
 - Étalonnage externe
 - Étalonnage interne (Internal calibration) si :
 - effets de matrice
 - ▶ fluctuations à court terme de signal (→ MS)
 - ▶ dérives à long terme du signal (→ contrôle qualité)

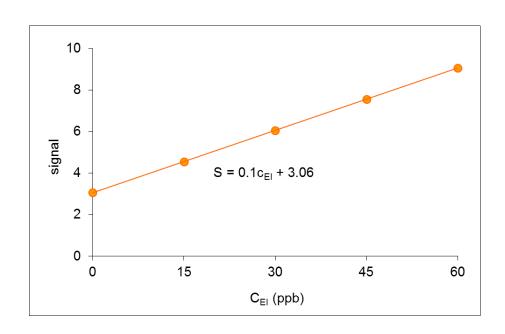

Ex: Perte de linéarité au cours de l'étalonnage en MS

3 types d'étalonnage:

- Étalonnage externe
- Étalonnage interne (Internal calibration) si :
 - effets de matrice
 - ▶ fluctuations à court terme de signal (→ MS)
 - ▶ dérives à long terme du signal (→ contrôle qualité)
- <u>Principe</u>: Ajout d'un élément ou d'une molécule de <u>concentration connue</u> (=étalon interne) dans tous les échantillons et étalons pour corriger les étalonnages
- L'étalon interne :
 - doit être exotique pour ne pas être dans l'échantillons
 - ne doit pas subir ou causer des interférences avec les analytes
 - doit avoir un comportement proche de l'élément auquel il est attribué
 - doit être stable dans le temps (pas de dégradation)

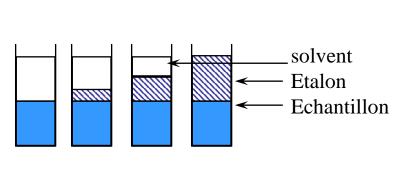

3 types d'étalonnage:

- Étalonnage externe
- Étalonnage interne:
 - Non trace S_{et}/S_i
 avec S_{et} = étalon externe
 et S_i = étalon interne

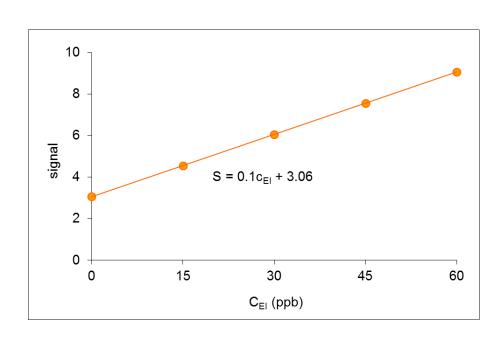

- Très utilisé dans les méthodes avec MS:
 - Principaux étalons internes pour les ICP-MS: ⁶Li, ⁴⁵Sc, ⁸⁹Y, ¹⁰³Rh, ¹¹⁵In, ^{...}
 - Pour GC-MS ou LC-MS: Molécule marquée ou isotope exotique de la molécule d'intérêt, par ex. atrazine deuterée (C₈H₉D₅N₅Cl) pour l'analyse de l'atrazine (C₈H₁₄N₅Cl)

- 3 types d'étalonnage:
 - Étalonnage externe
 - Étalonnage interne
 - Méthode des ajouts dosés (Standard addition method) si:
 - effets de matrice
- <u>Principe</u>: Ajout d'une masse connue d'un étalon de concentration connue dans tous les échantillons pour modifier la sensibilité de la méthode

$$V_T = 50 \text{ mL}$$


$$Vech = 10 mL$$

Le signal dépend à la fois de l'espèce présente dans l'échantillon dilué et de celle ajoutée par l'étalon (Et), tel que:

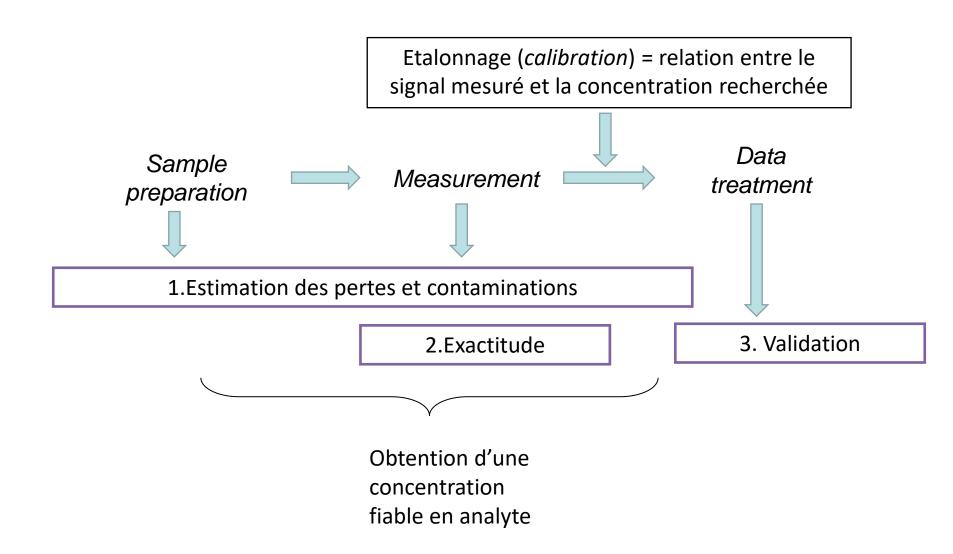

S= a
$$(C_{ed}+C_{Et})$$
 = a C_{Et} + b avec b = cste = a. C_{ed}
Si C_{Et} = 0, on a S = b = a C_{ed}

D'où
$$C_{ech} = C_{ed} \times (V_T/V_{ech})$$

$$V_T = 50 \text{ mL}$$

$$Vech = 10 mL$$

Le signal dépend à la fois de l'espèce présente dans l'échantillon dilué et de celle ajoutée par l'étalon (Et), tel que:


S= a
$$(C_{ed}+C_{Et})$$
 = a C_{Et} + b avec b = cste = a. C_{ed}
Si C_{Ft} = 0, on a S = a C_{ed}

D'où
$$C_{ech} = C_{ed} \times (V_T/V_{ech})$$

3 types d'étalonnage:

- Étalonnage externe
- Étalonnage interne
- Méthode des ajouts dosés (Standard addition method) si:
 - effets de matrice
- <u>Principe</u>: Ajout de volumes connus d'un <u>étalon de concentration connue</u> dans l'échantillon pour modifier la sensibilité de la méthode
- Méthode utilisée essentiellement pour l'analyse de matrices complexes ou chargées: eau de mer, huile, minéralisats de boues..
- Assez longue à mettre en œuvre si plusieurs échantillons.
- Nécessité d'avoir l'analyte pur pour faire les ajouts

6. Assurance qualité: Chaînes de qualité

6.4. Validation

Principe:

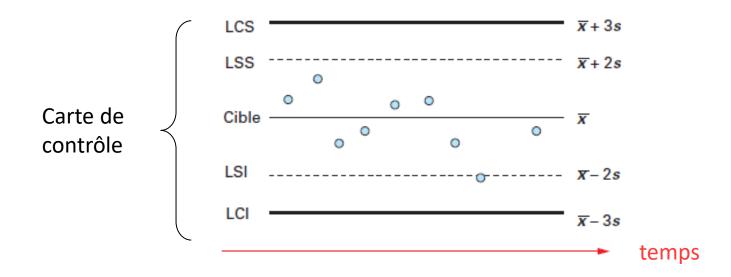
- Vérifier que la mesure répond aux exigences fixées par la norme
- ▶ En pratique, on vérifie 2 points
 - ▶ La limite de détection et/ou quantification
 - L'exactitude

6.4. Validation

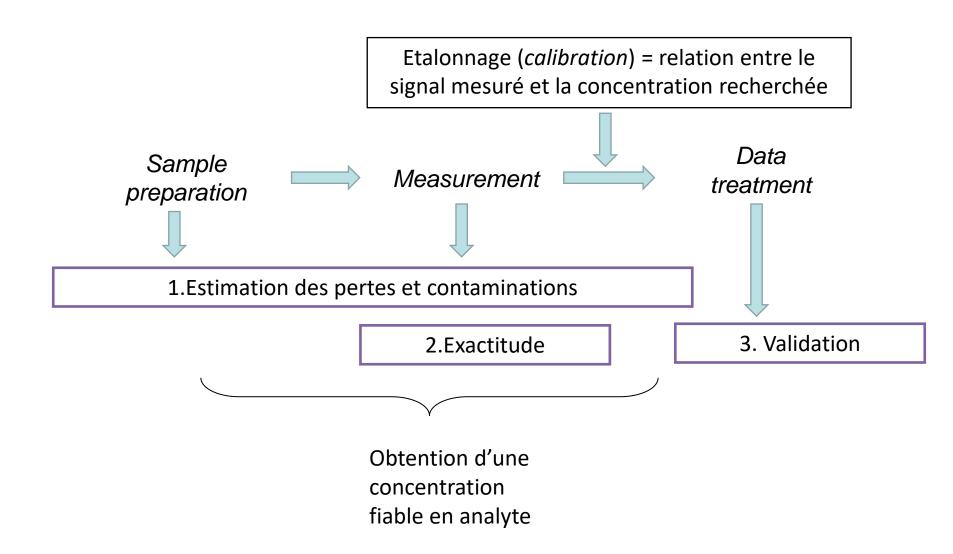
Principe:

- Vérifier que la mesure répond au exigences fixées par la norme
- ▶ En pratique, on vérifie 2 points
 - ▶ La limite de détection: concentration minimale détectable

$$LD = X_{BL} + 3\sigma_{BL}$$


- ► Avec X_{BL} = valeur moyenne de n mesures d'un échantillon blanc
- \bullet σ_{BI} = écart-type des mesures de blancs
- La limite de quantification: concentration minimale détectable et fidèle:

$$LQ = 3xLD ou 10 \sigma_{BL}$$


6.4. Validation

Principe:

- Vérifier que la mesure répond aux exigences fixées par la norme
- ▶ En pratique, on vérifie 2 points
 - ▶ La limite de détection et/ou quantification
 - L'exactitude

6. Assurance qualité: Chaînes de qualité

6. Assurance qualité: Les unités Internationales

Quantité physique	Symbole de quantité	Unité SI	Symbole de l'unité SI	
Longueur	1	Mètre	m	
Masse	m	Kilogramme	kg	
Temps	t	Seconde	s	
Température	T	Kelvin	K	
Quantité de matière	n	Mole	mol	

1 g	/g 10 m	g/g 1	0 1 μg/g	1 ng	y/g 1 pg	/g 1 fg/g	
≈ 1000 g/L ≈ 10 g/L		$\approx 1 \text{ mg/L}$ $\approx 1 \mu\text{g/L}$		g/L ≈ 1 :	≈ 1 ng/L ≈ 1 pg/L		
	Main annitranta Minaranasitan	Minor constituents		Traces			
b	Major constituents	Minor constituents	Micro-		Nano-	Pico-	Femto traces
≈ 100	p.c. 1 p.	c. 1	0 1 ppm	1 pp	pb 1 p	pt 1 pp	pq

Comment faire une analyse chimique fiable?

Besoin de maîtriser un grand nombre de techniques d'analyse afin d'identifier la technique la plus adaptée à vos besoins et développer le protocole adéquate intégrant des critères d'assurance qualité

- 1. choisir la méthode (spectrométrique, électrochimique, séparative, ...?)
- 2. choisir la technique par exemple, CPG ou HPLC
- 3. choisir le protocole relatif au traitement de l'échantillon
- 4. choisir le protocole d'analyse (mode opératoire retenu).
- 5. Présenter les résultats suivant les normes en vigueur
- → C'est la « recette » du dosage, généralement défini dans les normes. Cette normalisation porte sur la standardisation des étapes, de la préparation à la conduite des mesures.