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Abstract. A series of experiments was conducted in the CE-

SAM (French acronym for Experimental Multiphasic Atmo-

spheric Simulation Chamber) simulation chamber to investi-

gate the evolution of the physical and chemical properties of

secondary organic aerosols (SOAs) during different forcings.

The present experiments represent a first attempt to com-

prehensively investigate the influence of oxidative process-

ing, photochemistry, and diurnal temperature cycling upon

SOA properties. SOAs generated from the ozonolysis of α-

pinene were exposed under dry conditions (< 1 % relative hu-

midity) to (1) elevated ozone concentrations, (2) light (un-

der controlled temperature conditions) or (3) light and heat

(6 ◦C light-induced temperature increase), and the resultant

changes in SOA optical properties (i.e. absorption and scat-

tering), hygroscopicity and chemical composition were mea-

sured using a suite of instrumentation interfaced to the CE-

SAM chamber. The complex refractive index (CRI) was de-

rived from integrated nephelometer measurements of 525 nm

wavelength, using Mie scattering calculations and measured

number size distributions. The particle size growth factor

(GF) was measured with a hygroscopic tandem differential

mobility analyzer (H-TDMA). An aerosol mass spectrome-

ter (AMS) was used for the determination of the f44 / f43 and

O : C ratio of the particles bulk.

No change in SOA size or chemical composition was ob-

served during O3 and light exposure at constant temperature;

in addition, GF and CRI of the SOA remained constant with

forcing. On the contrary, illumination of SOAs in the absence

of temperature control led to an increase in the real part of the

CRI from 1.35 (±0.03) to 1.49 (±0.03), an increase of the

GF from 1.04 (±0.02) to 1.14 (±0.02) and an increase of the

f44 / f43 ratio from 1.73 (±0.03) to 2.23 (±0.03). The simu-

lation of the experiments using the master chemical mecha-

nism (MCM) and the Generator for Explicit Chemistry and

Kinetics of Organics in the Atmosphere (GECKO-A) shows

that these changes resulted from the evaporation of semi-

volatile and less oxidized SOA species induced by the rel-

atively minor increases in temperature (∼ 6 ◦C). These sur-

prising results suggest that α-pinene–O3 SOA properties may

be governed more by local temperature fluctuations than by

oxidative processing and photochemistry.

1 Introduction

Atmospheric aerosols influence climate directly by altering

the absorption and scattering of solar and terrestrial radiation

(Haywood and Ramaswamy, 1998) and indirectly by chang-

ing cloud properties (Lohmann and Feichter, 2005). One of

the major uncertainties in estimating the aerosol radiative

effect is associated with the contribution of secondary or-

ganic aerosols (SOAs). SOAs are formed by condensation

of species formed during gas-phase oxidation of volatile or-

ganic compounds (VOCs) and are a major constituent of at-
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mospheric organic aerosol Kanakidou et al., 2005; Turpin

and Huntzicker, 1995; Zhang et al., 2007). During their at-

mospheric lifetime, which ranges from 48 to 72 h (Wagstrom

and Pandis, 2009), their physical and chemical properties

do not stay constant but rather evolve in response to local

atmospheric conditions. For example, studies have shown

that SOAs can grow by condensation of low volatility oxi-

dized species (Ellison et al., 1999) and by cloud processing

(Cocker et al., 2001; Ervens and Volkamer, 2010; Volkamer

et al., 2009). SOAs can also be oxidized by gas-phase ox-

idants (Kalberer, 2004; Gao et al., 2004), undergo chemi-

cal reactions in the particle phase (Kalberer, 2004; Gao et

al., 2004) or partially evaporate (Warren et al., 2009). These

changes in aerosol properties have also been observed in the

field; for example, more oxidized, less volatile and more hy-

groscopic SOAs are typically observed in remote areas as

a result of continuous aging in the atmosphere (Jimenez et

al., 2009; Ng et al., 2011; Rudich et al., 2007). Since SOA

contains a wide variety of organic compounds, which vary in

terms of their size, structure, functionality and oxidation state

(Kroll and Seinfeld, 2008; Jimenez et al., 2009; de Gouw

et al., 2005; Hallquist et al., 2009), the processes associated

with SOA aging are very complex.

Experiments performed in simulation chambers have sig-

nificantly improved our understanding of the SOA aging pro-

cesses (Donahue et al., 2012; Qi et al., 2012; Yasmeen et al.,

2012). In order to provide modellers with accurate param-

eters for SOA aging in the atmosphere, these experiments

must be atmospherically relevant (Kourtchev et al., 2014).

While the O : C ratio of laboratory-generated SOAs is similar

to that of freshly formed ambient SOAs, it is generally lower

than that of aged ambient SOAs (Ng et al., 2010). In addi-

tion, while the representation of SOAs in chemical transport

models based on parameterization of chamber data showed

a good agreement with nighttime SOA concentrations (in a

rural site near Rotterdam, the Netherlands), an underpredic-

tion of SOA concentrations occurred during the day (Li et al.,

2013).

Research has shown that the oxidative aging of SOAs

in the atmosphere has a major influence on its properties.

For example, studies have shown that highly oxygenated or-

ganic particles are likely to have a higher hygroscopicity and

cloud condensation nuclei (CCN) activity than freshly emit-

ted particles, due to the increased polarity and solubility of

their constituents (Massoli et al., 2010; Jimenez et al., 2009;

Chang et al., 2010; Duplissy et al., 2011). Oxidative aging

has also been shown to lead to changes in the real part of

the complex refractive index (CRI) of SOAs (Cappa et al.,

2011; Lambe et al., 2013; Flores et al., 2014), and to an in-

crease in its UV absorption via the formation of additional

carbonyl compounds and oligomeric products (Sareen et al.,

2013; Nozière and Esteve, 2005; Shapiro et al., 2009; Lambe

et al., 2013). To date, laboratory studies have primarily fo-

cused on oxidative aging mediated by the heterogeneous re-

active uptake of OH radical (Rudich et al., 2007; George and

Abbatt, 2010; Smith et al., 2009). On the other hand, oxida-

tive aging by O3 has received less attention.

Light exposure has also been shown to influence SOA

properties; through photodissociation of molecules, such as

carbonyls and organic peroxides, either in the gas or the par-

ticle phase, it has been shown to induce a decrease in SOA

mass concentration (Kroll et al., 2006; Bateman et al., 2011).

There are also indications of significant photolytic process-

ing of carbonyl compounds in aerosols during long-range

transport (Hawkins and Russell, 2010). In addition, labo-

ratory studies have revealed that photochemical processes

alter the chemical composition of SOAs (Tritscher et al.,

2011; Cappa et al., 2011; Qi et al., 2012; George and Abbatt,

2010; Donahue et al., 2012) and modify its hydrophilicity

(Tritscher et al., 2011; George and Abbatt, 2010; George et

al., 2009), optical properties (Cappa et al., 2011) and volatil-

ity (Tritscher et al., 2011). In these studies, H2O2 was used as

a photolytic OH precursor. Since this OH source requires the

use of UV light, these experiments did not allow for the in-

dividual effects of heterogeneous reactions by OH and direct

photolysis on SOA properties to be distinguished.

SOA properties can also be affected by local temperature

variations via the evaporation of volatile products. A number

of studies have used thermodenuder-based techniques to in-

vestigate the volatility of SOAs and to determine the effect

of temperature on SOA properties (Asa-Awuku et al., 2008;

Huffman et al., 2009; Cappa and Wilson, 2011). Volatile tan-

dem differential mobility analyzers (V-TDMAs) have been

used to measure the shrinkage of monodisperse particles after

heating (Cappa and Wilson, 2011; Salo et al., 2011). In these

studies, particles were exposed to elevated temperatures (up

to 300 ◦C) for a short time. It has been shown, however, that

SOA exhibits a significantly slower response to changes in

temperature than that predicted by models for liquid droplets

(Cappa and Wilson, 2011). Recently, it has been suggested

that SOA could be in an amorphous semi-solid or amorphous

solid (glassy) state under dry conditions (Renbaum-Wolff et

al., 2013; Saukko et al., 2012; Denjean et al., 2014b), which

could limit the volatilization kinetics of the aerosol.

This study focuses on the SOA formed from the ozonolysis

of α-pinene, which is an important source of SOAs on both

regional and global scales (Guenther et al., 1995; Hallquist et

al., 2009). In our companion paper (Denjean et al. 2014b), we

explored the evolution of the physical, chemical, optical and

hygroscopic properties of α-pinene–O3 SOAs during the first

hours after its formation. However, Wang et al. (2011) have

shown that particle lifetime can vary from 10 h to 4 days in

the CESAM simulation chamber. CESAM is a powerful tool

for the study of SOAs over longer timescales corresponding

to their lifetime in the atmosphere (Yasmeen et al., 2012).

In the present work, we investigate in the same chamber the

effects of (i) additional ozone exposure, (ii) light exposure

and (iii) temperature variation on the chemical composition,

hygroscopicity and optical properties of α-pinene–O3 SOA,

over timescales reaching 20 h.
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2 Methods

2.1 CESAM atmospheric simulation chamber

The present experiments were performed in the CESAM

(French acronym for Experimental Multiphasic Atmo-

spheric Simulation Chamber) atmospheric simulation cham-

ber, which has previously been described in detail by Wang et

al. (2011). In brief, CESAM is a stainless-steel chamber with

a volume of 4.2 m3. Chamber illumination is accomplished

using the borosilicate-filtered output of three high-pressure

arc xenon lamps (4 kW, XPO 4000 W/HS, OSRAM), which

provides a good reproduction of the solar energy distribution

at the Earth’s surface over the 290–700 nm wavelength re-

gion. The inner walls of the chamber are polished in order to

provide good reflection inside the chamber and thus enhance

the radiation homogeneity. During our experiments, the NO2

photolysis frequency JNO2
within the chamber was approxi-

mately 3× 10−3 s−1, which corresponds to a solar zenith an-

gle of ∼ 70◦ (Carter et al., 2005). The simulation chamber

was maintained at room temperature (±1 ◦C) using a refrig-

erating liquid (70 % water / 30 % ethylene glycol), which was

circulated in the double walls of the chamber. Temperature

and relative humidity (RH) are monitored with a transmit-

ter (HMP234, Vaisala) equipped with a thin-film capacitive

humidity sensor (HUMICAP®, Vaisala). During our experi-

ments, the temperature accuracy is ±0.1 ◦C at 20 ◦C and the

RH accuracy is ±1.9 % (up to 90 % RH).

2.2 Experimental details

Prior to each experiment, the chamber was evacuated to a

secondary vacuum (typical pressure ∼ 4× 10−4 mbar) and

kept under vacuum overnight. The chamber was then filled

to atmospheric pressure with a mixture of 200 mbar of oxy-

gen (Air Liquide, ALPHAGAZ™ class 1, purity 99.9 %) and

800 mbar of nitrogen produced from the evaporation of a

pressurized liquid nitrogen tank (Messer, purity > 99.995 %,

H2O < 5 ppm). The background conditions were typically:

particles concentration < 0.1 µg m−3, ozone mixing ratio

< 5 ppb, gas-phase organics < 5 ppb and RH < 1 %. To avoid

contamination, a slight overpressure of about 5 mbar with

respect to the atmospheric pressure was maintained dur-

ing each experiment by adding nitrogen (Messer, purity

> 99.995 %, H2O < 5 ppm).

All aging experiments were carried out under the same ini-

tial conditions with α-pinene and ozone reacting in the dark,

with neither seeds nor OH scavenger. O3 was generated in

an O2 flow using a commercial dielectric ozone SOA gen-

erator (MBT 802N, Messtechnik GmbH, Stahnsdorf, Ger-

many) and introduced to the chamber through an injection

port. Quantification of α-pinene was performed by evaporat-

ing precisely measured amounts of the terpene into a glass

bulb held under vacuum. When the O3 concentration within

the chamber reached ∼ 250 ppb, α-pinene (Aldrich, 98 %)

was flushed from the bulb into the chamber in a flow of oxy-

gen to a concentration of ∼ 200 ppb within the chamber. In

all experiments, SOAs, formed directly after α-pinene injec-

tion, and its precursors were essentially consumed after 4 h

of reaction.

In our companion paper, we observed changes in the ox-

idative degree and optical properties during the formation of

SOAs, but these changes ceased after 9 h of reaction (Den-

jean et al., 2014b). In the present study, therefore, SOAs were

allowed to evolve for 14 h prior to simulating atmospheric

processing, which was in turn conducted over a period of

6 h. Three different aging regimes were applied after 14 h of

α-pinene ozonolysis: (1) 700 ppb of ozone was introduced

into the simulation chamber, (2) SOAs were exposed to light

for 6 h in the absence of temperature control, during which

time the temperature increased by∼ 6 ◦C and (3) SOAs were

exposed to light for 6 h under controlled temperature condi-

tions (±1 ◦C). For comparison purposes, control experiments

were performed: in these experiments, SOAs were allowed

to remain in the chamber for 20 h under dark conditions. The

specific experimental conditions associated with each aging

regime are shown in Table 1. As discussed in our compan-

ion paper (Denjean et al., 2014b), the variation of SOA mass

concentration between the experiments was attributed to dif-

ferent concentrations of α-pinene injected to the chamber.

Despite this, the chemical, optical and hygroscopic proper-

ties of SOA were found to be very similar between the ex-

periments. Therefore, the experiments were considered to be

comparable for studying the effect of forcing on SOA prop-

erties.

During these experiments, the concentrations of α-pinene,

ozone and VOCs were monitored using a Fourier transform

infrared spectrometer (FTIR) from Bruker GmbH (Ettlingen,

Germany) coupled to a multi-reflection cell with an optical

path of 192 m. During the different forcings, the concentra-

tions of gas-phase compounds were found to be below the

detection limit. Ozone was also measured with a commercial

instrument (Horiba APOA 370, Kyoto, Japan), with a detec-

tion limit of 0.2 ppb and a precision of 0.1 ppb.

2.3 Measurement of SOA properties

2.3.1 Size distribution

SOA number size distributions between 14 and 505 nm were

monitored using a scanning mobility particle sizer (SMPS;

DMA Model 3080, CPC Model 3010; TSI) operated at flow

rates of 3/0.3 Lpm (sheath flow/aerosol sample flow). In-

strument calibration was conducted using polystyrene latex

spheres (PSL) (Duke Scientific). Since the PSL diameters

measured during calibration were∼ 10 % larger than the cer-

tified PSL diameters (for 100 nm PSL samples), a correction

factor was applied to all measurements. Corrections for par-

ticle loss by diffusion in the SMPS tubing and the contribu-

tion of multiply charged particles were made using the SMPS

www.atmos-chem-phys.net/15/883/2015/ Atmos. Chem. Phys., 15, 883–897, 2015
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Table 1. Summary of experimental conditions.

Forcing details

Type of forcing Run Cmt=0
a [O3]t=0

b Lights on Tt=0/Tt=6 h
c

µg m−3 (ppb) (min) (◦C)

E160411 50.4 0 0 20.5/22.3

Control E260411 112.5 0 0 20.4/21.3

experiments E301111 36.5 0 0 18.4/18.9

E091211 42.5 0 0 17.2/18.3

O3 E021211 57.8 680 0 18.1/17.7

exposure E071211 48.1 630 0 17.1/16.9

Light ex- E200411 78.0 0 348 21.4/27.9

posure with E281111 29.8 0 358 17.2/23.2

increasing E051211 50.5 0 346 16.4/22.7

temperature E120312 117 0 350 20.7/25.4

Light E030512 80.0 0 354 21.4/21.9

exposure E060512 84 0 361 19.8/20.1

a Aerosol mass concentration estimated from the aerosol volume concentration corrected from dilution and

by assuming a density of 1.2 g cm−3.
b Ozone concentrations determined using FTIR spectroscopy.
c Temperature before forcing/temperature after forcing.

software (Aerosol Instrument Manager, version 9, TSI). The

number size distribution was used to obtain SOA mass con-

centrations, assuming homogeneous spherical particles and

an effective density of 1.2 g m−3, as determined by Shilling et

al. (2008), Saathoff et al. (2009) and Denjean et al. (2014b).

2.3.2 Chemical composition

SOA chemical composition was analyzed using a high-

resolution time-of-flight aerosol mass spectrometer (HR-

ToF-AMS, Aerodyne) (DeCarlo et al., 2006). Instrumental

and data treatment details are given in our companion pa-

per (Denjean et al., 2014b), and thus will be described only

briefly here. The HR-ToF-AMS was used under standard

conditions (vaporizer at 600 ◦C and electron ionization at

70 eV). The instrument was switched between two modali-

ties: a single-reflectron configuration (V-mode), which offers

higher sensitivity but lower resolving power (up to∼ 2100 at

m/z 200), and a double-reflectron configuration (W-mode),

which provides a higher resolving power (up to ∼ 4300 at

m/z 200) but a lower sensitivity (De Carlo et al., 2006). De-

fault collection efficiencies (CEs) and relative ionization ef-

ficiencies (RIEs) were used for quantification of SOA com-

position. High-resolution analysis was performed using V-

mode data, by integrating each CxHyOz ion in the mass

range 12–180 m/z; W-mode data were used only to check

for possible interferences. The method is based on the RIEs

of molecules containing C, H and O atoms. The sum of the

ion signal intensities from all fragments was used to estimate

the O : C ratio of the SOA, and thus its degree of oxidation.

Air interferences were removed by adjusting the fragmenta-

tion table (Aiken et al., 2007; Allan et al., 2004). Additional

modification of the fragmentation table was made for organic

H2O+ as suggested by Chen et al. (2011). The default frag-

mentation table derives the contribution from fragmentation

of organic compounds (dehydration) to the ion H2O+ as or-

ganic H2O+ = 0.225∗CO+2 , considering that the measured

excess is due to the interference of water. Since the exper-

iments were run under very dry conditions (RH < 1 %), the

ion H2O+ has been totally assigned to fragmentation of or-

ganic compounds which corresponds to a organic H2O+ to

CO+2 ratio of 0.8–1:1. Similar organic H2O+ to CO+2 were

obtained in previous studies of α-pinene ozonolysis (Chen et

al., 2011; Chhabra et al., 2010). Measurement uncertainties

of O : C were estimated to be±30 %, as determined by Aiken

et al (2007).

2.3.3 Optical properties

SOA optical properties were characterized by combining

data obtained from an integrating nephelometer (Model

M9003, Ecotech), a spectral aethalometer (Model AE31,

Magee Scientific) and the SMPS described above. The in-

tegrating nephelometer measured the scattering coefficient

(σscatt) of 525 nm wavelength, as well as the temperature and

relative humidity of the incoming airflow, and was calibrated

prior to the experiments using filtered air and CO2. The neph-

elometer collected light only from particles at scattering an-

gles between 10◦ and 170◦. Measured scattering coefficients

were corrected for this angular truncation using Mie calcu-

lations, which were performed using the measured SMPS

size distribution. The aethalometer measured the SOA ab-
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sorption coefficient at 7 wavelengths (370, 470, 520, 590,

660, 880 and 950 nm) by measuring the increase in atten-

uation of transmitted light through its quartz fiber filter as

a function of particle exposure time. In order to avoid arte-

facts from the adsorption of ozone and VOCs on the filter, a

charcoal denuder was installed upstream of the aethalometer

(Weingartner et al., 2003). Measurements of light attenuation

were corrected for aerosol scattering effects according to the

method described by Collaud Coen et al. (2010) and using

the parameters obtained by Denjean et al. (2014a, 2014b) for

α-pinene–O3 SOAs.

These measurements were ultimately used to calculate the

real and imaginary parts of the CRI, which together describe

the scattering and absorbing characteristics of SOAs. The

CRI retrieval procedure employed has been described and

validated in Denjean et al. (2014a). In brief, the CRI of SOAs

was retrieved at 525 nm by comparing the measured scatter-

ing and absorbing coefficients (σscat and σabs,respectively)

with those obtained from Mie scattering calculations (Bohren

and Huffman, 1983) performed using the measured number

size distribution. The absolute error associated with the real

CRI was ±0.03 (Denjean et al., 2014b).

2.3.4 Hygroscopic properties

SOA hygroscopic properties were analyzed with a custom-

built hygroscopic tandem differential mobility analyzer

(H-TDMA), which is described in detail in Denjean et

al. (2014a). The first differential mobility analyzer (DMA)

was used to select particles with a mobility diameter of

200 nm, which were then humidified at a constant RH of

90± 1 % (residence time ∼ 15 s). The second DMA, which

was coupled to a CPC, measured the humidified size distri-

bution (with respect to the mobility diameter). Both DMAs

were calibrated using monodisperse PSL particles (Duke Sci-

entific) with size diameters of 70, 100, 200 and 300 and

500 nm. These size distributions were fitted to log-normal

size distributions to obtain the dry geometric mean diame-

ter, Dp,m (dry), and the geometric mean diameter of the hu-

midified aerosol, Dp,m (90 % RH). These values were used

to obtain the size growth factor (GF), which is defined as the

ratio of Dp,m (90 % RH) to Dp,m (dry). The uncertainties in

the calculated GF are associated with uncertainties in par-

ticle size distributions arising from DMA classification and

calibration, as well as with uncertainties in the estimation

of Dp,m from size distributions, and are estimated to ±0.02.

Prior to each experiment, the experimental set-up was vali-

dated by comparing measurements of the GF of ammonium

sulfate particles to those predicted by Köhler theory (Den-

jean et al., 2014a).

2.4 Modelling SOA formation and aging

In order to assist in the interpretation of experimental results,

the α-pinene ozonolysis experiments were simulated using a

box model that included the MCM (version 3.1) (Saunders

et al., 2003) and the Generator for Explicit Chemistry and

Kinetics of Organics in the Atmosphere (GECKO-A) (Au-

mont et al., 2005). The MCM v3.1 oxidation scheme for α-

pinene contains 329 organic species and 973 reactions. The

GECKO-A chemical scheme for α-pinene oxidation, which

provides a more detailed description of the gaseous oxida-

tion of organic species and takes into account minor reaction

pathways not considered by the MCM, involves 5.7× 104 or-

ganic species reacting according to 1.7× 106 reactions (Val-

orso et al., 2011). Both models simulate gas–particle parti-

tioning in terms of equilibria between the gas phase and an

ideal liquid homogeneous condensed phase (Camredon et al.,

2007).

Vapour pressures and boiling points for secondary organic

species were estimated using the methods developed by Nan-

noolal et al. (2004, 2008), as they have been shown to pro-

vide the most reliable estimates for the purpose of SOA for-

mation (Barley and McFiggans, 2010). Accretion, oxidation

and photolysis in the condensed phase were not taken into ac-

count in this investigation in the models. In addition, recent

studies (Renbaum-Wolff et al., 2013; Saukko et al., 2012;

Denjean et al., 2014b) suggest that α-pinene-O3 SOA vis-

cosity increases with aging. Due to possible kinetic limita-

tions, heterogeneous chemistry and particle-phase reactions

can be limited in highly viscous aerosol. The effect of vis-

cosity on rate constants were not taken into account in the

current MCM and Gecko-A models.

Time integration of the chemical schemes was solved us-

ing the two-step solver (Verwer et al., 1994, 1996). The gas–

particle partitioning module was solved using the iterative

method described in Pankow (2008). Simulations were ini-

tialized at a time point corresponding to α-pinene injection.

This injection was implemented in the model as a constant

flux over the injection time period that reproduced the ob-

served concentration. Dilution within the chamber (arising

from the periodical injection of N2 to compensate for in-

strumental sampling flows) was described as a measurement-

constrained first-order process and applied in the simulations

to both gas and aerosols. The temperature used in the simu-

lations was that observed in the CESAM chamber during the

experiments. Ozone-wall loss is significant in the CESAM

chamber (Wang et al., 2011). The ozone loss rate employed

in the simulations, therefore, was adjusted for each experi-

ment in order to reproduce its measured decay.

3 Results

3.1 Changes in SOA size distribution during simulated

atmospheric processing

Figure 1 shows the temporal evolution of SOA mass con-

centrations (normalized to the mass concentration at the be-

ginning of each aging experiment and corrected for dilution

www.atmos-chem-phys.net/15/883/2015/ Atmos. Chem. Phys., 15, 883–897, 2015
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Figure 1. Temporal evolution of SOA mass concentrations (nor-

malized to the mass concentration at the beginning of each forcing)

during and after simulated atmospheric processing. In the control

experiment (blue symbols), SOA was left to evolve in the chamber

under dark conditions. In the O3 aging experiments (green), SOA

was exposed to an excess of ozone (∼ 700 ppb) under constant tem-

perature conditions. In the photochemical aging experiments, SOA

was exposed to light for 6 h, either under constant temperature con-

ditions (yellow) or with light-induced heating (red). Here, the initial

time t = 0 corresponds to the beginning of simulated aging, which

was commenced after SOA was allowed to form and stabilize for

14 h.

within the chamber) during and after simulated atmospheric

processing. As shown in this figure, the SOA mass concen-

trations in the control experiments decreased by∼ 15 % over

the 6 h duration of the experiment. Since these measurements

were performed after the total consumption of O3, this mass

decrease cannot be attributed to O3-induced fragmentation

reactions. It is thus probable that the SOA mass decrease ob-

served in the control experiments arose via losses of particle

and gaseous compounds to the chamber walls. Similar be-

haviour was observed when SOA was exposed to ozone and

to light under controlled temperature conditions, which sug-

gests that these forcings did not lead to significant fragmen-

tation or functionalization. On the contrary, exposure of SOA

to light and increasing temperature led to a 40 % loss in total

SOA mass concentration and, as shown in Fig. 2, to a change

in the SOA number size distribution: as the temperature in-

creased from 20 ◦C to 26 ◦C, the geometric mean diameter

of the normalized SOA number size distribution decreased

from 286 nm to 249 nm, which also indicates that significant

evaporation of SOA particles occurred.

3.2 Changes in SOA optical and hygroscopic properties

during simulated atmospheric processing

Since the CRI is related to the aerosol chemical composition,

density, molecular weight and polarization (Liu and Daum,

Figure 2. Temporal evolution of SOA number size distribution

(normalized to the total number concentration) (a) during pho-

tochemical aging in the absence of temperature control (experi-

ment E120312) and (b) during a control experiment (experiment

E160411). The temporal evolution of the median diameter during

photochemical aging in the absence of temperature control (exper-

iments E201411, E281111, E051211 and E120312) and during a

control experiment (Experiment E160411) is shown in (c).

2008), it was thus expected to be influenced by atmospheric

processing. The imaginary part of the SOA CRI over the

370–950 nm wavelength range is shown in Fig. 3. Its value

was almost zero at all the wavelengths studied, which indi-

cates that SOA, even after simulated atmospheric process-

ing, has a pure scattering effect in the visible to near-UV

region. The formation of chromophores has been observed

previously from the ozonolysis of biogenic terpenes (Bones
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Figure 3. Wavelength dependence of the imaginary part of the com-

plex refractive index of SOA before and after simulated atmospheric

processing. In the control experiment (blue symbols), SOA was

left to evolve in the chamber under dark conditions. In the O3 ag-

ing experiments (green), SOA was exposed to an excess of ozone

(∼ 700 ppb) under constant temperature conditions. In the photo-

chemical aging experiments, SOA was exposed to light for 6 h, ei-

ther under constant temperature conditions (yellow) or with light-

induced heating (red).

et al., 2010; Laskin et al., 2010; Zhong et al., 2012). Some

oligomers formed in particle-phase can contain long conju-

gated structures which increase the light absorption proper-

ties of SOA in the visible. Interestingly, while one might have

expected the formation of chromophores during the aging

processes, our results indicate that this phenomenon occurred

only weakly for α-pinene–O3 SOA and/or that the specific

absorption of any potential aging products was not signif-

icant. Unlike toluene (Nakayama et al., 2010) or limonene

(Bones et al., 2010), α-pinene–O3 SOA products did not con-

tain long conjugated structures which absorbed visible radi-

ation, at least under our experimental conditions when con-

ducted in the absence of NOx or seed particles.

The influence of atmospheric processing upon the real

part of the SOA CRI is shown in Fig. 4. No discernible

change in real CRI was observed when the SOA was ex-

posed to O3 or to light at constant temperature. On the con-

trary, a significant increase in the real CRI was observed,

1.35 (±0.03) to 1.49 (±0.03), after photolytic forcing with

increasing temperature. The hygroscopic properties of SOA

were studied by measuring the GF at a constant relative hu-

midity (90± 1 %). As shown in Fig. 5, the GF remained con-

stant (∼ 1.04± 0.02) both during O3 exposure and during

photochemical aging at constant temperature. These results

are consistent with our observations of constant mass con-

centration and CRI of SOA, and confirm that no significant

processing of the SOA occurred under these conditions. In

contrast, a significant increase in the GF, from 1.04 (±0.02)

to 1.14 (±0.02), was observed with increasing temperature.

Figure 4. Measurements of the real part of the complex refractive

index of SOA before and after simulated atmospheric processing.

In the control experiment (blue symbols), SOA was left to evolve

in the chamber under dark conditions. In the O3 aging experiments

(green), SOA was exposed to an excess of ozone (∼ 700 ppb) un-

der constant temperature conditions. In the photochemical aging ex-

periments, SOA was exposed to light for 6 h, either under constant

temperature conditions (yellow) or with light-induced heating (red).

Here, the initial time t=0 corresponds to the beginning of simulated

aging, which was commenced after SOA was allowed to form and

stabilize for 14 h.

3.3 Changes in SOA chemical composition during

simulated atmospheric processing

The results presented in the previous two sections suggest

that the exposure of the aging of SOA to light and increas-

ing temperature resulted in changes in its physical, optical

and hygroscopic properties, which are likely to be linked to

changes in its chemical composition. Indeed, as shown in

Fig. 6a, the increase in the O : C ratio of bulk SOA during its

exposure to light and increasing temperature, 0.55 (±0.16)

to 0.59 (±0.18), was much larger than that observed for SOA

under control conditions. The increase in the O : C ratio was,

however, within the measurement uncertainties (±30 %) es-

timated from Aiken et al. (2007). These uncertainties may be

overestimated compared to the experimental variability and

even experimental reproducibility observed in this study. In

fact, we estimated the experimental uncertainties to be±0.01

from the standard deviation of the experimental values before

the forcing. A new parameterization of the O : C ratio de-

rived from the AMS was recently presented by Canagaratna

et al. (2014). Application of this new parameterization to our

measurements resulted in a O : C ratio similar to that obtained

with our modified fragmentation table in which the measured

fragment H2O+ was assigned to organic compounds. This

indicates that the two methodologies agree under very dry

conditions (RH < 1 %). The average O : C ratio obtained with

both parameterizations was 20 % larger than that obtained
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Figure 5. Temporal evolution of SOA hygroscopicity, here parame-

terized using the size growth factor (GF), during and after simulated

atmospheric processing. In the control experiment (blue symbols),

SOA was left to evolve in the chamber under dark conditions. In

the O3 aging experiments (green), SOA was exposed to an excess

of ozone (∼ 700 ppb) under constant temperature conditions. In the

photochemical aging experiments, SOA was exposed to light for

6 h, either under constant temperature conditions (yellow) or with

light-induced heating (red). Here, the initial time t = 0 corresponds

to the beginning of simulated aging, which was commenced after

SOA was allowed to form and stabilize for 14 h.

with the Aiken method and can be attributed to an underes-

timation in the Aiken method of the CO+ and H2O+ ions

produced from many oxidized species.

The fragments f44, defined as the ratio of the m/z 44 (a

major fragment of organic acids and hydroperoxides) signal

to the total organic aerosol signal, and f43, defined as the ra-

tio of m/z 43 (associated with less oxygenated groups, e.g.

aldehydes and alcohols) signal to the total organic aerosol

signal, have been widely used in laboratory and field studies

as indicators of SOA functionality and degree of oxidation

(Ng et al., 2010; Alfarra et al., 2013; Poulain et al., 2010;

Pfaffenberger et al., 2013). As shown in Fig. 6b, in the ex-

periment performed under illumination but in the absence

of temperature control, the f44 / f43 ratio of SOA increased

from 1.73 (±0.03) to 2.23 (±0.03) as the chamber temper-

ature increased. This result implies a temperature-mediated

increase in particle-phase oxidized species. On the contrary,

only a small increase in the f44 / f43 ratio, from 1.93 (±0.03)

to 2.03 (±0.03), was observed during the control experiment,

which implies that the SOA composition in this experiment

remained relatively constant.

3.4 Effect of phase partitioning on SOA properties

During the aging of SOAs by photolysis with increasing tem-

perature, we observed a decrease of the mass concentration

(Fig. 1) which was associated with an increase of the f44 / f43

ratio of bulk particles (Fig. 6b). These evolutions may result

from possible shifts of some semi-volatile organics to the gas

phase as temperature increases. A second possible explana-

tion would be the photochemical reactions that occur in the

condensed phase combined with the evaporation of less oxi-

dized compounds. In this case, photolysis could lead to a loss

of semi-volatile and less oxidized compounds in the particle

phase due to the fragmentation of condensed-phase species

(Donahue et al., 2012; Henry and Donahue, 2012).

In order to investigate if the increase in temperature can

explain the SOA mass decrease, the SOA formation and evo-

lution were modelled with the detailed chemical schemes

GECKO-A and MCM. In these models, the simulated SOA

formation started at the initial step of α-pinene ozonolysis.

The effects of temperature on phase partitioning were sim-

ulated with both models. The effects of photochemical re-

actions and heterogeneous reactions by O3 were ignored in

these simulations. As shown in Fig. 7 for the initial SOA for-

mation period, the time profiles of α-pinene and ozone con-

centrations were well reproduced by both models within the

measurement uncertainties. Although the temporal profile of

the SOA formation was also well reproduced by the mod-

els, the simulated mass concentrations of SOAs obtained us-

ing the GECKO-A and MCM models (302 and 337 µg m−3,

respectively) were higher than those observed in the exper-

iment (130 µg m−3). This overestimation of the simulated

SOA mass concentration might be due either to an underesti-

mation of the vapour pressure with the Nannoolal method

used in this study or some oxidation processes occurring

in the aerosol phase and leading to fragmentation not im-

plemented in the model. In addition, an unavoidable conse-

quence of simulation chamber measurements is the interac-

tion of gases with the chamber wall surfaces. It is plausible

that the VOC-wall losses affect the SOA mass concentration

by being a sink for semi-volatile products preventing them

from condensing on the aerosol phase.

Four experiments, each of which exhibited different tem-

perature increases, were simulated using these models. SOA

mass concentration loss was calculated as the difference be-

tween the mass concentration before and after each forcing.

For the simulations, only the effects of the temperature on

phase partitioning were simulated with both models. The ef-

fects of photochemical reaction on the gas and particle phase

were omitted. A comparison between the observed and mod-

elled loss of SOA mass concentration under these tempera-

ture conditions is presented in Fig. 8a. As shown in this fig-

ure, both the temporal profile and magnitude of SOA mass

loss observed in these experiments were well reproduced by

the GECKO-A and MCM models. This finding suggests that

the observed heating-induced loss in SOA mass concentra-

tion can be explained by the temperature-dependent gas–

particle phase partitioning of the semi-volatile components

of SOA.

The measured and simulated O : C ratios for these exper-

iments are shown in Fig. 8b. Before the forcing, both mod-

els predict an O : C ratio of 0.49, which is within the uncer-
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Figure 6. Evolution of the (a) O : C ratio and (b) f44 / f43 ratio of

SOAs during the control experiment (blue circles) and during ex-

posure to light with increasing temperature (red circles). The tem-

perature profiles within the chamber during the two experiments

are shown in (c). Here, the initial time t = 0 corresponds to the be-

ginning of simulated aging, which was commenced after SOA was

allowed to form and stabilize for 14 h.

tainty of the experimental value (0.55± 0.16) obtained with

the AMS. During the aging experiments, the O : C ratio sim-

ulated with the two models increased with increasing tem-

perature; for example, experiment E200411, which showed

the highest temperature increase (+6.5 ◦C; red in Fig. 8c),

also showed the highest increase in simulated O : C ratio

(from 0.49 to 0.51); on the contrary, experiment E060512

Figure 7. Comparison of temporal profiles of measured α-pinene

(red circles), ozone (blue circles) and SOA mass concentration

(green circles) with those modelled using GECKO-A (dashed lines)

and the master chemical mechanism (MCM) (solid lines). The ex-

perimental data are taken from experiment E160410.

exhibited constant values for both temperature and simu-

lated O : C ratio (yellow in Fig. 8b and c). These results sug-

gest that the changes in SOA physical and chemical proper-

ties observed in these experiments resulted from the heating-

induced evaporation of semi-volatile and less oxidized SOA

species, which in turn modified the optical and hygroscopic

properties of the condensed phase.

4 Discussion

Our results have shown that exposure of SOAs to increas-

ing temperature enhances its hydrophilicity, degree of oxida-

tion and scattering properties. On the contrary, the few previ-

ous studies investigating the changes in physical and chem-

ical properties of α-pinene–O3 SOAs as a function of tem-

perature have largely found little effect: Cappa and Wilson

(2011) observed a reduction in the total mass concentration

but no change in the mass spectra of α-pinene–O3 SOAs af-

ter heating at 170 ◦C, and Kim and Paulson (2013) showed

no significant change over temperatures ranging from 23 to

86 ◦C in the real CRI of SOAs. Using AMS data, Huffman

et al. (2009) observed an increase in SOA oxygen content

during SOA evaporation. This trend is in good agreement

with the increase in the CO+2 fragment (m/z 44) with SOA

evaporation observed by Kostenidou et al. (2009). Finally,

Warren et al. (2009) showed that the GF of SOAs decreased

with decreasing temperature from 27 ◦C to 5 ◦C. These dis-

agreements with the present study may be attributable to two

differences in experimental conditions. First, in the present

study, the long timescale of the experiments (20 h) allows

for stability in the chemical composition of the semi-volatile

component of SOAs before processing. On the contrary, in

the previous studies, SOA volatility was measured only sev-

eral minutes after its formation. Since the chemical composi-
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Figure 8. (a) Loss in SOA mass concentration (calculated as the

difference between the SOA mass concentrations before and after

simulated atmospheric processing) and (b) O : C ratio of the bulk

SOAs for four experiments exhibiting (c) different temperature in-

creases. Here, the experimental data (filled circles) are compared

with results obtained using the MCM (solid lines) and the GECKO-

A (dashed lines) models. The blue points refer to the control ex-

periment (E160411), the yellow points refer to an experiment in

which SOA was exposed to light under controlled temperature con-

ditions (E060512), and the red and brown points refer to experi-

ments in which SOA was exposed to light and increasing tempera-

ture (E200411; E120312). Here, the initial time t = 0 corresponds

to the beginning of simulated aging, which was commenced after

SOA was allowed to form and stabilize for 14 h.

tion of SOAs has been observed to vary significantly during

its formation (Shilling et al., 2008; Chhabra et al., 2010; Den-

jean et al., 2014b), it is likely that the volatility of the con-

densed species also varies during this time period. Second,

in most of the previous studies, temperature variation was

performed using a thermodenuder. The timescale for aerosol

evaporation within thermodenuders (∼ 16 s) is significantly

lower than in simulation chambers (several hours) and, ow-

ing to mass transfer limitations, may not be long enough for

SOA evaporation to occur (Lee et al., 2011).

Surprisingly, our results suggest that exposure of α-pinene

SOAs to light and O3 does not significantly change its chem-

ical, hygroscopic and optical properties. These observations

suggest that, under our experimental conditions, neither sig-

nificant photolysis nor ozonolysis of the particle-phase prod-

ucts occurred.

Several previous studies have reported a decline in α-

pinene–O3 SOA mass after irradiation under exposure to low

OH concentrations (Donahue et al., 2012; Henry and Don-

ahue, 2012). These authors used UV lights (∼ 360 nm) to ini-

tiate photochemistry; on the contrary, a more realistic repro-

duction of the solar energy distribution at the Earth’s surface

was used in our study (Wang et al., 2011). In a test of the

effect of light source upon SOA aging, Donahue et al. (2012)

observed a monotonic decrease in SOA mass during aging

with 360 nm UV lights, but an increase in SOA mass during

aging with sunlight or quasi-solar lamps. These observations

can be explained by the fact that some oxygenated organ-

ics in the SOA condensed phase, such as carbonyls or per-

oxides, undergo photodissociation by photolysis at the spe-

cific wavelength of 360 nm. Together, these results highlight

the strong influence of the light source on the photodisso-

ciation of SOAs, and underscore the utility of experiments

performed under realistic illumination conditions.

In addition, the molecular structure of α-pinene, which

contains only one double bond and thus one active site for

ozone reaction, limits the gas-phase oxidation by ozone of

reaction products of α-pinene. Since no scavenger of OH rad-

icals was added, α-pinene–O3 SOA is likely a mixture of OH

and O3 oxidation products of α-pinene. Therefore, some of

the products may still contain unreacted C=C bonds, which

can then react with O3. Our results indicate that the relative

contribution of the products of these reactions may not be

sufficient to significantly affect the chemical properties of

SOAs during the ozone-induced forcing.

Recent literature has highlighted that α-pinene–O3 SOA

is not composed of a homogeneous chemical mixture. For

example, when Maurin et al. (2015) exposed α-pinene–O3

SOA to high concentrations of O3, they observed a con-

stant particle-phase concentration of verbenone, an unsatu-

rated oxygenated product. Since this molecule would have

been expected to be consumed by heterogeneous reaction

with O3, and since heterogeneous particle-phase reactions

are predicted to occur mainly at the surface of the particles

(Shiraiwa et al., 2013), these authors postulated that reaction
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of O3 with verbenone was kinetically limited by the diffusion

of buried verbenone to the particle surface. This hypothesis

is also supported by our observation that α-pinene–O3 SOA

exhibits a core-shell structure, with less oxidized species at

its surface (Denjean et al., 2014b). The effect of the forcing

would depend not only on the chemical composition of the

bulk particle, but also on the chemical surface and the phase

of the particle.

5 Conclusions

We have demonstrated that the size, chemical composition,

hygroscopicity and optical properties of α-pinene–O3 SOAs

change dramatically in response to relatively minor increases

in temperature (∼ 6 ◦C). These changes, in turn, have impli-

cations for the role that SOA plays in climate. For example,

the volatilization-induced increase in the real part of the SOA

CRI is likely to enhance the direct radiative effect of SOA by

increasing its ability to scatter radiation. The direct radiative

effect of SOA can be parameterized using the mass extinc-

tion efficiency kext at 525 nm, which is defined as the ratio

of the measured σscat at 525 nm to the SOA mass concentra-

tion. In our companion paper (Denjean et al. 2014b), we have

estimated a value of kext = 1.7± 0.5 m2 g−1 for unprocessed

SOAs. In the present experiments, we estimate a value of

kext = 2.8± 0.5 m2 g−1 for SOAs exposed to light and tem-

perature increase, which implies that this aging regime led to

a∼ 40 % enhancement in this parameter. We attribute this en-

hancement to both the decrease in SOA particle size and the

increase in the scattering component of the CRI upon heat-

ing.

As shown in this work, exposure of SOAs to increasing

temperature also leads to an increase in SOA hygroscop-

icity: the SOA GF increased from 1.04 to 1.14 as a result

of this forcing. In order to estimate the influence of these

changes in hygroscopicity on the direct radiative effect of

SOAs, we made the simplified assumption that SOA exhibits

a homogeneous mixing state with water. We used Mie scat-

tering calculations for homogeneous spheres to determine

σscat at 90 % RH both from the measured GF and the CRI.

The CRI calculations were based on volume-weighted CRI

of values of α-pinene–O3 SOA and water. We estimate that

kext (90 % RH)= 2.8± 0.7 m2 g−1 after SOA volatilization,

which is significantly higher than the value of kext (90 %

RH)= 2.3± 0.7 m2 g−1 calculated in Denjean et al. (2014b)

for unprocessed SOAs. Since we have shown that volatiliza-

tion of condensed-phase species takes place over a range of

temperatures consistent with diurnal fluctuations, we suggest

that these changes in kext are representative of the diurnal

evolution of SOAs during its lifetime in the atmosphere.

Our results also suggest that α-pinene–O3 SOA is quite

insensitive to light- and ozone-induced aging under our ex-

perimental conditions. Insensitivity to ozone-induced aging

is most likely a result of the molecular structure of α-pinene

which limit the gas-phase oxidation by ozone of reaction

products of α-pinene. In addition, several recent studies have

reported that α-pinene–O3 SOA undergoes a transition from

a more glassy state to a more liquid state with increasing

RH (Saukko et al., 2012; Renbaum-Wolff et al., 2013; Den-

jean et al., 2014b). On the basis of viscosity data and the

Stokes–Einstein equation, Renbaum-Wolff et al. (2013) es-

timated that the change in α-pinene–O3 SOA viscosity as-

sociated with its transition from a solid to a semi-solid state

increases the bulk diffusion coefficient of particles by 6 or-

ders of magnitude (from< 10−17 cm2 s−1 to 10−11 cm2 s−1).

Since an increase in bulk diffusion coefficient would be ex-

pected to be accompanied by an increase in particle reac-

tivity, we suggest that future studies examine the effect of

ozone and light exposure on α-pinene–O3 SOA properties

under humidified conditions (i.e. RH > 30 %). Beyond its ef-

fect on the physical state of the particles, the relative hu-

midity may influence the chemical composition of SOAs.

Recently, Kristensen et al. (2014) observed that α-pinene–

O3 SOAs increased concentrations of high molecular weight

compounds, such as dimer esters, at higher RH (> 50 %) rel-

ative to lower RH (< 30 %). An increase in high molecular

weight compounds with increase RH could lead to a change

in hygroscopic and optical properties of α-pinene–O3 SOAs

as well as its sensitivity to aging processes. In addition, fur-

ther experimental studies on SOAs which exhibit different

viscosity are required in order to evaluate the atmospheric

implication of the oxidative processing and photochemistry.
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